Paramagnetic Materials and Practical Algorithmic Cooling for Nmr Quantum Computing *

نویسنده

  • Yossi Weinstein
چکیده

Algorithmic Cooling is a method that uses novel data compression techniques and simple quantum computing devices to improve NMR spectroscopy, and to offer scalable NMR quantum computers. The algorithm recursively employs two steps. A reversible entropy compression of the computation quantum-bits (qubits) of the system and an irreversible heat transfer from the system to the environment through a set of reset qubits that reach thermal relaxation rapidly. Is it possible to experimentally demonstrate algorithmic cooling using existing technology? To allow experimental algorithmic cooling, the thermalization time of the reset qubits must be much shorter than the thermalization time of the computation qubits. However such thermalization-times ratios have yet to be reported. We investigate here the effect of a paramagnetic salt on the thermalization-times ratio of computation qubits (carbons) and a reset qubit (hydrogen). We show that the thermalization-times ratio is improved by approximately three-fold. Based on this result, an experimental demonstration of algorithmic cooling by thermalization and magnetic ions is currently performed by our group and collaborators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Cooling for Nmr

Algorithmic cooling is a method that uses novel data compression techniques and simple 19 quantum computing devices to improve NMR spectroscopy, and to offer scalable NMR quantum computers. The algorithm recursively employs two steps. A reversible entropy 21 compression of the computation quantum-bits (qubits) of the system and an irreversible heat transfer from the system to the environment th...

متن کامل

Algorithmic Cooling in Liquid State NMR

Algorithmic cooling is a method that employs thermalization to increase qubit purification level, namely it reduces the qubit-system’s entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C2trichloroethylene, cooli...

متن کامل

Algorithmic Cooling of Spins: a Practicable Method for Increasing Polarization

An efficient technique to generate ensembles of spins that are highly polarized by external magnetic fields is the Holy Grail in Nuclear Magnetic Resonance (NMR) spectroscopy. Since spin-half nuclei have steady-state polarization biases that increase inversely with temperature, spins exhibiting high polarization biases are considered cool, even when their environment is warm. Existing spin-cool...

متن کامل

Algorithmic cooling and scalable NMR quantum computers.

We present here algorithmic cooling (via polarization heat bath)-a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression, by using a set of rapidly thermal-relaxing bits. Such auxiliary b...

متن کامل

ar X iv : q ua nt - p h / 05 11 15 6 v 1 1 6 N ov 2 00 5 Experimental Heat - Bath Cooling of Spins

Algorithmic cooling is a novel technique to generate ensembles of highly polarized spins, which could significantly improve the signal strength in Nuclear Magnetic Resonance (NMR) spectroscopy. It combines reversible (entropy-preserving) manipulations and irreversible controlled interactions with the environment, using simple quantum computing techniques to increase spin polarization far beyond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004